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Introduction
• Metallic foam structures

– Open cell foams can be fabricated through established foaming processes 
for some alloys (e.g., Al, Cu, Zn)

– Closed cell foams can be produced via powder metallurgy (e.g., Ti, Ni, Fe)

– Additive manufacturing opens new possibilities for novel foam structures 
for a wide range of alloys

– This project will use additive manufacturing to create open cell structures 
than can be infiltrated with other alloys to create bi-metallic composites
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Introduction

• The shape memory effect is well 
documented and being studied for 
numerous applications

• Change in crystal structure from high 
temperature austenite phase to a low 
temperature martensite phase

• Plastic strain accommodated by twinning; 
recovered by reverse transformation (heat 
or strain)

• The objective is to exploit this 
phenomenon to produce beneficial 
residual stresses that inhibit crack growth
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The Innovation
• Strain fields within a structure can have a significant impact 

on properties and performance

• Cracks tend to nucleate from a free surface and grow when 
stress levels exceed the threshold stress intensity factor (DKth)

• Below the threshold level cracks do not grow
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Handbook of Damage Tolerant Design

Objective:

Create a unique bi-metallic

composite structure with a 

carefully designed residual 

stress field that can be

tailored to limit or eliminate

the ability of a surface crack

to propagate through the

structure.



Affecting Crack Driving Force

Crack closure
– Compressive residual stress may promote 

premature clamping of crack faces 
reducing the effectiveness of cyclic loading

Crack deflection
– Residual stresses or diagonal 

reinforcements may cause crack 
deflection; deviation away from the plane 
of highest principal normal stress with 
decrease the crack-tip driving force

Interfaces between dissimilar materials
– Cracks may not readily grow between      

Ti-6Al-4V matrix and NiTi

November 17 & 19, 2015 NASA Aeronautics Research Mission Directorate 2015 Seedling Phase II Technical Seminar 7

θ



Impact
This concept could greatly impact the fatigue performance of 
aerospace components through crack closure and/or deflection

– Improved structural efficiency in damage tolerance limited applications

Potential use in anti-ballistic impact applications through shock 
wave disruption/attenuation

– Micrometeoroid and Orbital Debris (MMOD) shielding

– Armored tactical vehicles

November 17 & 19, 2015 NASA Aeronautics Research Mission Directorate 2015 Seedling Phase II Technical Seminar 8



Technical Approach – Processing 

The Arcam electron beam powder bed 
additive manufacturing process was 
used

– Fabrication was done at U. of Texas at 
El Paso (phase I) and Marshal Space 
Flight Center (phase II)

– Thin layer of powder is spread over a 
substrate and fused together using 
electron beam

– Substrate platform increments 
downward and the process is repeated 
for another thin powder layer

– This process is repeated until the 
desired 3-D structure is created
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Technical Approach – Processing 

Utilize additive manufacturing to create open cell net structures 
to be infiltrated with a secondary alloy powder and hot 
consolidated into a fully-dense, multi-alloy material

– Proof of concept with Ti-6Al-4V AM-fabricated material infiltrated with 
commercially-pure titanium and vacuum hot pressed to full density
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Material Design

Periodic cell structure
– Diagonal crossing pattern

– Approximately 1mm 
spacing between cell 
centers

Arcam samples
– Ti-6Al-4V

– Nominal dimensions
• 100mm by 31mm

• 7mm border on sides

• 19mm border on ends
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Material Processing
• Ni-Ti powder vibrated into open cell samples

– 50.7 at% Ti; 49.3 at% Ni; -140 mesh (<105 mm)

– As = 68oC; Af = 109oC; Ms = 78oC; Mf = 38oC

• Mechanical die is used; material consolidation by hot pressing
– 940oC for 4 hours at 1,000 psi

• Perform shape set heat treatment
– 500oC for 15 minutes

• Cold rolling
– 5% reduction in thickness

• Memory activation
– 115oC for 15 minutes
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Material Processing

• Radiography of vacuum hot pressed sample performed
– No major voids found indicating complete fill of open cells

– Some incidental porosity found (red circles)
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Hardness Test Results
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Testing performed on X-Z plane with Knoop indenter aligned to:
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Hardness Test Results

Hardness of Arcam product is superior to other 
e-beam AM deposition method
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Fatigue Crack Growth Specimen

• Eccentrically-loaded 
single-edge notch tension 
(ESE(T)) specimen
– Pin loaded

– Tests run in K-control
• Crack mouth opening used to 

monitor crack length during 
test

• Automated system 
continuously adjusts load to  
achieve programmed crack-tip 
stress intensity factors (DK)

• Residual stress component of 
crack-tip stress intensity 
monitored by tracking zero-
load offset of crack mouth 
opening (similar to cut-
compliance test)
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Residual Stress Determination
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Residual Stress Determination
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Fatigue Crack Growth Testing

• Constant-DK test
– Slope of plotted data is crack 

growth rate (da/dN)
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Arcam product)
– Steady da/dN

– Little residual stress 
detected
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Results to Date/Summary

• Material produced
– Well-consolidated, nearly-fully-dense metallic composite 

• Material characterized
– Small pores, but otherwise well consolidated

– No delaminations or imperfections observed at Ti-6Al-4V/NiTi
interfaces

• Material tested
– Bi-metallic composite in a state of prestress (residual stress); slight 

material warping observed

– Fatigue crack growth testing revealed that suppression of crack growth 
rates occurred in the NiTi-rich region of the specimen corresponding 
to compressive residual stresses
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Dissemination 

• C.A. Brice, W. Tayon, J.A. Newman, R.N. Shenoy, S. Sankaran, 
S. Gardner, and Z. Loftus, “Characterization of Titanium Alloys 
Fabricated by Additive Manufacturing,” presented at the 13th

World Conference on Titanium, August 19, 2015, San Diego, 
California.

• C.A. Brice, “Bi-metallic Composite Structures with Designed 
Internal Residual Stress Field,” NASA/TM-2014-218174.

• J.A. Newman, C.A. Brice, W.A. Tayon, and K. Cooper, 
“Functionally Tailored Multi-component Composite Structures 
via Additive Manufacturing,” in progress; to be submitted as a 
NASA/TM.
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Next Steps
• Characterization of residual strain field

– Mechanical test results suggests variation in residual stress occurs on 
small length scale

– Digital image correlation should be used to characterize the residual 
strain field on the specimen surface
• Strain field determined by tracking relative displacements of speckles on specimen 

surface during mechanical testing

• Could characterize shape-memory transformation in NiTi and crack closure

• Able to use image correlation on a wide range of length scales (from mm to nm)

• Fatigue testing could provide additional information
– Cyclic loading but with no crack

– Cracks would naturally initiate, likely at regions of tensile residual stress

– Equilibrium requires there to be regions of tensile residual stress to 
offset regions of compressive residual stress
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